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Abstract
Understanding the mechanisms that can lead to the evolution of cooperation through

natural selection is a core problem in biology. Among the various attempts at

constructing a theory of cooperation, game theory has played a central role. Here, we

review models of cooperation that are based on two simple games: the Prisoner’s

Dilemma, and the Snowdrift game. Both games are two-person games with two

strategies, to cooperate and to defect, and both games are social dilemmas. In social

dilemmas, cooperation is prone to exploitation by defectors, and the average payoff in

populations at evolutionary equilibrium is lower than it would be in populations

consisting of only cooperators. The difference between the games is that cooperation is

not maintained in the Prisoner’s Dilemma, but persists in the Snowdrift game at an

intermediate frequency. As a consequence, insights gained from studying extensions of

the two games differ substantially. We review the most salient results obtained from

extensions such as iteration, spatial structure, continuously variable cooperative

investments, and multi-person interactions. Bridging the gap between theoretical and

empirical research is one of the main challenges for future studies of cooperation, and we

conclude by pointing out a number of promising natural systems in which the theory can

be tested experimentally.
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I N TRODUCT ION

Cooperation is ubiquitous in biological systems, and so is its
exploitation. Cooperation is a conundrum, whereas its
exploitation is not, at least not at first sight. Cooperative
entities make a sacrifice: they help others at a cost to
themselves. Exploiters, or cheaters, reap the benefits and
forego costs. Based on utilitarian principles – be it in the
form of evolution by natural selection of the !fittest" type, or
in the form of !rational" behaviour generating the highest
payoff – exploitation should prevail, and cooperation should
be rare.

Yet the history of life on Earth could not have unfolded
without the repeated cooperative integration of lower level
entities into higher level units. Thus, major evolutionary
transitions (Maynard Smith & Szathmáry 1995), such as the
evolution of chromosomes out of replicating DNA
molecules, the transition from uni-cellular to multi-cellular
organisms, or the origin of complex ecosystems, could not

have occurred in the absence of cooperative interactions.
Similarly, the emergence of complex animal and human
societies requires cooperation (Maynard Smith & Szathmáry
1995; Crespi & Choe 1997; Dugatkin 1997).

Since its invention by von Neumann & Morgenstern
(1944), the mathematical framework of game theory has
been a central tool for understanding how cooperative
entities can overcome the obvious fitness and payoff
disadvantages and persist in the face of cheating and
exploitation. Game theory embodies the concept of
frequency dependent selection, which is at the heart of the
problem of cooperation, because the actual costs of
cooperation ultimately depend on the type of individuals a
cooperator interacts with. Maynard Smith & Price (1973)
ingeniously related the economic concept of payoff
functions with evolutionary fitness, thus marking the advent
of an entirely new approach to behavioural ecology that
inspired numerous theoretical and empirical investigations.
In particular, evolutionary game theory has been used
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extensively to study the problem of cooperation (Nowak &
Sigmund 2004).

These attempts go back to a seminal paper by Trivers
(1971), in which he introduced the notion of reciprocal
altruism. This notion embodies the idea that cooperation
may evolve in a context in which future behaviour may be
determined by current payoffs. Reciprocal altruism was
famously embedded into evolutionary game theory by
Axelrod & Hamilton (1981). Their models are based on
the Prisoner’s Dilemma game (PD), perhaps the single most
famous metaphor for the problem of cooperation (Box 1).
In this game, natural selection favours defection and thereby
creates a social dilemma (Dawes 1980), because when
everybody defects, the mean population payoff is lower than
if everybody had cooperated. In the past two decades, it has
been a major goal of theoretical biology to elucidate the
mechanisms by which this dilemma can be resolved.

The social dilemma of the PD can be relaxed by assuming
that cooperation yields a benefit that is accessible to both
interacting players, and that costs are shared between
cooperators. This results in the so-called Snowdrift game
(SD), which is also known as the Hawk-Dove game, or the
Chicken game (Maynard Smith 1982; Sugden 1986, Box 1). Its

essential ingredient is that in contrast to the PD, cooperation
has an advantage when rare, which implies that the replicator
dynamics (Taylor & Jonker 1978; Hofbauer & Sigmund 1998)
of the SD converges to a mixed stable equilibrium at which
both C and D strategies are present. Starting with Maynard
Smith & Price (1973), the SD (or Hawk-Dove game) has been
well studied in the context of competition and escalation in
animal conflicts, but its role as a simple metaphor in the
broader context of the evolution of cooperation has been
much less emphasized. In spite of this, we think that the SD
may actually be widely applicable in natural systems.

Here we review models of cooperation that are based on
the PD and SD games. Since the dynamics of these models is
easily understood (Box 1), studying suitable extensions can
reveal mechanisms by which cooperation can either be
enhanced or reduced as compared with the baseline models.
In particular, since the PDdoes not allow for cooperation, any
extensions that do can be viewed as representing mechanisms
that promote cooperation. The essential feature of any
mechanism to promote cooperation is that cooperative acts
must occur more often between cooperators than expected
based on population averages. Thus, there must be positive
assortment between cooperative types (Queller 1985). In the

Table 1 Payoff matrices of (a) the Prisoner’s Dilemma (PD); and (b) the Snowdrift game (SD). In both cases, the benefits b exceed the costs
of cooperation c (b > c > 0), which leads to the characteristic payoff ranking of PDC > PCC > PDD > PCD in the PD and PDC >
PCC > PCD > PDD in the SD for the four possible pairings of C and D. Note that for high costs (2b > c > b) the SD converts to the PD.

(a) Prisoner’s Dilemma (b) Snowdrift game

C D C D
Payoff to C b ) c )c Payoff to C b ) c/2 b ) c
Payoff to D b 0 Payoff to D b 0

Box 1: The Prisoner’s Dilemma and Snowdrift games

In the PD, players can adopt either one of two strategies: cooperate (C) or defect (D). Cooperation results in a benefit b to
the opposing player, but incurs a cost c to the cooperator (where b > c > 0); defection has no costs or benefits. This results
in the following payoffs (Table 1a): if the opponent plays C, a player gets the reward R ¼ b ) c if it also plays C, but it can
do even better and get T ¼ b if it plays D. On the other hand, if the opponent plays D, a player gets the lowest payoff S ¼
)c if it plays C, and it gets P ¼ 0 if it also defects. In either case, i.e. independent of whether the opponent plays C or D, it is,
therefore, better to play D. In evolutionary settings, payoffs determine reproductive fitness, and it follows that D is the
evolutionarily stable strategy (ESS) (Maynard Smith 1982). This can be formalized using replicator dynamics (Taylor &
Jonker 1978; Hofbauer & Sigmund 1998), which admits pure defection as the only stable equilibrium.
In the SD, cooperation yields a benefit b to the cooperator as well as to the opposing player, and incurs a cost c if the

opponent defects, but only a cost c/2 if the opponent cooperates. This results in the following payoffs (Table 1b): R ¼
b ) c/2 for mutual cooperation, T ¼ b for D playing against C, S ¼ b ) c for C playing against D, and P ¼ 0 for mutual
defection. If b > c > 0 as before, then C is a better strategy than D if the opponent plays D. On the other hand, if the
opponent plays C, then D is still the best response. Thus, both strategies can invade when rare, resulting in a mixed
evolutionarily stable state at which the proportion of cooperators is 1)c/(2b ) c). It is important to note that in this state the
population payoff is smaller than it would be if everybody played C, hence the SD still represents a social dilemma (Hauert
& Doebeli 2004).
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PD, positive assortment can for example arise because of
direct reciprocity in iterated interactions, due to spatially
structured interactions, or because of indirect reciprocity with
punishment and reward. We first review insights gained from
such extensions about the conditions under which cooper-
ation can thrive in models based on the PD. We then
demonstrate that the same mechanisms may not always give
rise to positive assortment, and hence increased cooperation,
in the SD. This is surprising, because both games represent
social dilemmas, and if anything, the relaxed conditions in the
SD would appear to be in favour of cooperators. Neverthe-
less, extensions of the SD game can reveal general principles
for the evolutionary dynamics of cooperation. The PD and
the SD are simple mathematical models, but much has been
learned from analysing these games and their extensions
about one of the core problems in evolutionary biology. We
conclude by outlining promising directions for further
explorations of the evolution and maintenance of cooper-
ation based on these games and their applications in empirical
model systems.

MODELS OF COOPERAT ION BASED ON THE
PR I SONER ’ S D I L EMMA

The PD embodies the problem of cooperation: although
individuals can benefit from mutual cooperation, they can
do even better by exploiting cooperation of others.
Therefore, the PD provides an interesting basis for
exploring mechanisms that can either prevent exploitation
or make it unprofitable, thus enabling cooperation to persist.

Iterated interactions

In the Iterated Prisoner’s Dilemma (IPD), a single game
consists of a number of rounds of the simple PD, which
allows individuals to react to an opponent’s past behaviour.
If players interact repeatedly before the final tally is made,
low expected payoffs in future interactions because of
retaliation against current defection could render cooper-
ation beneficial. This is the basic idea of reciprocal altruism
(Trivers 1971). Repeated interactions open up a whole new
world of possible strategies determining whether to coop-
erate or defect in the next round based on the outcome of
earlier rounds. Exploring this world has been the subject of
intense scrutiny by researchers in various fields, including
economics, political science, biology, computer science and
artificial intelligence.

Perhaps the best-studied class of strategies in the IPD are
strategies that base their behaviour in round n + 1 of an
interaction on what happened in round n. The most famous
example of this type of strategy is !Tit-for-Tat" (TFT), which
consists of cooperating in the first round of the iteration,
and then doing whatever the opponent did in the previous

round. In the seminal computer tournaments of Axelrod
(1984), the simple TFT strategy emerged as the clear winner
against a range of other strategies (including very sophis-
ticated ones), and the success of TFT was attributed to the
fact that it never defects first, retaliates when the opponent
defects, but forgives when the opponent reverts to
cooperation. These properties generate iterated interactions
that consist either mostly of CC rounds or mostly of
DD rounds, and hence can be interpreted as giving rise
to positive assortment between cooperative behaviours
(J. Fletcher, pers. comm.). In particular, in a population of
TFT players, individuals end up always cooperating, hence
the success of TFT corresponds to maintenance of
cooperation. However, the precise meaning of success in
the IPD is somewhat ambiguous. For example, Boyd &
Lorberbaum (1987) showed that no deterministic strategy is
evolutionarily stable in the IPD. Moreover, TFT performs
poorly in a noisy world, in which players are prone to make
erroneous moves that can cause long series of low paying
retaliatory behaviour.

The problem of noise can be addressed by considering
probabilistic strategies. For strategies that condition the
propensity to cooperate on the opponent’s move in
the previous round, evolutionary dynamics reveals that the
probabilistic strategy Generous TFT (which retaliates only
with probability 2/3) prevails in the long run, albeit only
after its rise is catalysed by TFT (Nowak & Sigmund 1992).
Extending the strategy space to include strategies that
condition the probability to cooperate on the payoff
received in the previous round, i.e. on the previous moves
of the opponent as well as of the player itself, a new type of
strategy, termed Pavlov, evolves (Nowak & Sigmund 1993).
Pavlov implements a simple and intuitive behavioural rule:
win-stay, lose-shift. It consists of repeating the previous
move if that move resulted in the high PD payoffs T or R,
and of switching to the opposite behaviour if the previous
round resulted in the low PD payoffs P or S. Interestingly,
Pavlov again relies on TFT as a catalyst of cooperation. To
date, Pavlov appears to be the most consistently successful
strategy in the IPD (Kraines & Kraines 2000).

Many other IPD strategies have been studied in the
literature (see e.g. Sugden (1986); Brembs (1996) and
Dugatkin (1997), especially Table 2.1 in the latter). In
addition, there are many interesting variants and extensions
of the IPD, which we can only mention briefly here. A
biologically relevant alternative is obtained by considering
the alternating IPD, in which players take turns in updating
their behaviour (Frean 1994; Nowak & Sigmund 1994; Neill
2001). The alternating IPD tends to favour more forgiving
strategies than the simultaneous IPD (Frean 1994; Nowak &
Sigmund 1994), and it has been argued that the best
strategies for the alternating game have a large memory, i.e.
are strategies that are based on a number of previous moves
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(Frean 1994; Neill 2001). This seems to contrast with results
for the synchronous IPD, in which increasing the memory
size does not seem to significantly change the characteristics
of successful strategies (Axelrod 1984; Lindgren 1991;
Hauert & Schuster 1997). Other results show that
cooperation is favoured if engaging in IPD interactions is
optional (Batali & Kitcher 1995; see also Box 3), if there are
extrinsic factors that maintain variation in behaviour
(McNamara et al. 2004), or if more sophisticated strategies
are considered. For example, successful strategies can
exhibit an internal state that implements the idea of good
and bad standing and enables strategies to deal with certain
types of errors (Boerlijst et al. 1997). Internal states can also
serve to implement basic forms of information processing
that can lead to superior performance (Hauert & Stenull
2002).

By studying stochastic game dynamics in finite popula-
tions, Nowak et al. (2004) have recently argued that
cooperation in the IPD may be enhanced by small
population sizes. In another recent development, a new
round of IPD tournaments was organized (see http://
www.prisoners-dilemma.com) to commemorate the 20th
anniversary of Axelrod’s seminal work on the IPD (Axelrod
1984). This time so-called !colluding strategies" emerged as
the winning type. These strategies cooperate with their own
type and play TFT against everyone else. In order to
discriminate between self and non-self, colluding strategies
exchange a secret handshake in the form of a sequence of
identification moves at the beginning of each IPD encoun-
ter. However, it is not clear how such identification
mechanisms would evolve in the first place, and how
colluding strategies can increase in frequency when they are
rare (i.e. when they do not meet their own type), but the
concept of collusion may provide interesting new perspec-
tives for use of the IPD in behavioural ecology and
psychology.

Spatial PD games

Investigating the effects of spatial structure on population
biological processes has been a major theme in theoretical
ecology and evolution in the past two decades. In
particular, it has been realized that spatial structure may
be a potent promoter of cooperation. Axelrod (1984)
already pointed out the potential role of spatial structure,
but it was really the seminal paper by Nowak & May
(1992) that spawned a large number of investigations of
!games on grids" (Nowak & Sigmund 2000), i.e.
evolutionary games that are played in populations whose
individuals occupy sites on a spatial lattice. Payoffs
obtained from local interactions with neighbouring
individuals are then used to update the lattice, i.e. to
create subsequent generations in the evolutionary process.

The propagation of successful strategies to neighbouring
sites may be interpreted either in terms of reproduction, or
in terms of imitation and learning (Nowak & Sigmund
2004). There are a number of different ways in which such
updating procedures can be implemented with respect to
individual sites (e.g. deterministic or probabilistic) and to
the entire lattice (e.g. synchronous or asynchronous).
Nevertheless, an unambiguous conclusion that has been
reached from studies of the spatial PD is that spatial
structure promotes cooperation (Nowak & May 1992,
1993; Hubermann & Glance 1993; Nowak et al. 1994a;
Killingback et al. 1999). Cooperators can survive by
forming clusters within which they reap the benefits from
mutual cooperation and which allows them to persist
despite exploitation by defectors along the cluster bound-
aries (Fig. 1). Thus, maintenance of cooperation in the
spatially structured PD is a robust phenomenon, even
though the dynamics of the spatial games can be very
complicated, and even though the exact range of PD
payoff parameters b and c (cf. Fig. 1a) for which
cooperation can persist does depend on the update rules
(Hubermann & Glance 1993; Nowak et al. 1994a; Nowak
& Sigmund 2000). For an interactive on-line tutorial
exploring these issues we refer to Hauert (2005).

Because spatial clustering implies that cooperators
interact more often with their own type than expected by
chance based on mean population frequencies, it is possible
to interpret the effects of spatial structure on the evolution
of cooperation in the context of the theory of kin selection
Hamilton (1963). Box 2 discusses the connections between
the spatial PD and kin selection in more detail.

The conclusion that spatial structure is beneficial for
cooperation has also been reached for spatial versions of the
IPD. For example, Lindgren & Nordahl (1994) showed that
compared with non-spatial games, the unconditional
cooperator AllC does much better in spatial IPD’s and
often outperforms TFT. Among deterministic strategies that
condition their moves on the previous round, Pavlov is the
most successful strategy in spatial IPD’s (Lindgren &
Nordahl 1994), just as in the non-spatial IPD. However, if
probabilistic reactive strategies are considered, spatial
structure favours more forgiving versions of the strategies
that are successful in unstructured games (Grim 1995;
Brauchli et al. 1999).

Most models of spatial evolutionary game theory can
exhibit very complicated dynamics [e.g. Killingback &
Doebeli (1998); Hauert (2001)], and it is, therefore, generally
difficult to obtain analytical results. Some analytical results
have been obtained using geometrical arguments about
cluster formation (Nowak & May 1992; Killingback et al.
1999; Hauert 2001), and Schweitzer et al. (2002) recently
gave a classification of the dynamic regimes in the spatial
PD. Interesting phase transitions can occur between the
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different dynamic regimes of spatial games (Szabó & Tõke
1998; Szabó & Hauert 2002).

Perhaps the most promising approach for understanding
the dynamics of lattice models analytically involves the
technique of pair approximation (Matsuda et al. 1992; Ellner
2001). This deterministic approximation yields a set of
differential equations describing the dynamics of spatial
games based on pair correlations between nearest neigh-
bours, while neglecting higher order terms. Pair approxi-
mation has led to fairly good agreement with results from
numerical simulations in a number of different models
(Dieckmann et al. 2000). Examples are shown in Fig. 1 for
the spatial PD and in Fig. 2 for the spatial SD.

Other analytical results have been obtained for spatial
models under simplifying assumptions, e.g. for one-dimen-
sional lattices (Eshel et al. 1999). Finally, analytical results have
also been obtained by using reaction-diffusion models based
on partial differential equations (Hutson & Vickers 1995;
Ferrière & Michod 1996) to describe spatially structured
populations. The results confirm the overall conclusion that
spatial structure is beneficial for cooperation in the PD.

So far, this conclusion has been reachedmainly formodels in
which spatial structure was incorporated by using regular
square lattices, in which interactions and reproduction/
imitation was limited to either the four or the eight nearest
neighbours. Some recent results indicate that the lattice
topology does affect the dynamics of cooperation and that,

interestingly, relaxing the rigid purely local neighbourhood
structure of lattices seems to benefit cooperation (Abramson&
Kuperman 2001;Masuda&Aihara 2003; Ifti et al. 2004;Hauert
& Szabó 2005). For example, in PD games on random regular
graphs (in which all individuals have the same fixed number of
neighbours, but neighbours are drawn randomly from the
population), the parameter range over which cooperators
persist is larger than for regular lattices (Hauert & Szabó 2005).
This is surprising because the formation of compact clusters is
more difficult on random regular graphs. Also, Koella (2000)
has shown that cooperation can persist in spatial PD
interactions even if dispersal and interaction distances are
allowed to evolve, leading to long-range dispersal and
interactions in defectors, but not in cooperators. On the other
hand, cooperation can be impeded if for any given individual
there is a substantial difference between its interaction and its
reproduction neighbourhood. (Ifti et al. 2004). For future
research it will be an interesting topic to address these questions
in greater detail, and in particular to study the evolution of
lattice topologies and neighbourhood sizes.

Continuous PD games

In the classical PD, cooperation is all or nothing, since this
game has only two strategies. However, it is natural to assume
that in real systems, cooperation can vary continuously. This
idea has been present in other models of cooperation (e.g.

(a) (b)
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Figure 1 The spatial PD. (a) Fraction of cooperators as a function of the cost-to-net-benefit ratio q ¼ c/(b ) c). Solid (open) squares show
simulation results for synchronous (asynchronous) population updates. The solid line indicates predictions from pair approximation (see main
text) and the dashed line from replicator dynamics for spatially unstructured populations. For sufficiently small q cooperators can survive by
forming compact clusters, as illustrated by a typical snapshot of the lattice configuration (b) for q close to the extinction threshold of
cooperators. Methods: one update rule that is particularly generic in our view consists of updating a focal individual as follows: first calculate the
average payoff of the focal individual from interactions with its neighbours, then pick one of the focal individual’s neighbours at random and
calculate that neighbour’s average payoff from its interactions with its own neighbours, and finally determine whether the next occupant of the
focal individual’s site is the offspring of the focal individual or of the neighbour by probabilistically comparing their payoffs. For synchronous
population updates all sites are updated simultaneously, whereas for asynchronous updating the focal individual is drawn at random.
Asynchronous updating corresponds to modelling continuous time dynamics. In well-mixed populations, in which all individuals are
neighbours of all other individuals, the rule represents an individual based implementation of the replicator dynamics (Hauert & Doebeli 2004).
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Box 2: Kin-selection and population structure

The theory of kin selection (Hamilton 1964a,b) is often invoked to explain the origin of cooperation and the resolution of
conflicts. The basic idea is that if a !helper gene" causes its carrier to provide a benefit b to others at a cost c to itself, then
the frequency of the helper gene only increases if the benefits fall sufficiently often to other carriers of the gene, e.g.
because of relatedness between actor and recipient. Specifically, if r is the degree to which benefits accrue to other altruists
compared with average population members, then Hamilton’s rule specifies that the helper gene will increase from low
frequencies if its inclusive fitness r b ) c is greater than zero.
Kin selection is rarely considered in models of reciprocal altruism (for exceptions see e.g. Marshall & Rowe 2003), but it

is possible to establish a connection between kin selection and the dynamics of cooperation in the spatial PD. It is
generally thought that kin selection should operate in !viscous" populations (Hamilton 1964a), in which limited dispersal
promotes interactions among relatives. In the lattice models discussed here, population viscosity is obtained by assuming
that individuals only interact with and disperse to neighbouring sites. The following simple argument illustrates that kin
selection can benefit cooperation under these conditions. Imagine a homogenous lattice population consisting of
defectors into which cooperators try to invade. An analytical argument based on the technique of pair approximation (van
Baalen & Rand 1998; Le Gaillard et al. 2003, see also main text) shows that as long as cooperators are rare, every
cooperator has on average approximately one other cooperator in its neighbourhood. Therefore, from playing a PD
against each of its n neighbours the cooperator gets a total benefit of b and pays a total cost of n c. On the other hand,
defectors get nothing, having on average only defectors as neighbours because cooperators are rare. As a result,
cooperators can invade if b ) n c > 0, or equivalently, if r b ) c > 0, where r ¼ 1/n is the average degree of relatedness
of a cooperator to its neighbours. This could be considered as Hamilton’s rule for the spatial PD, and inspection of Fig. 1a
shows that the rule is quite accurate: for n ¼ 4 cooperators should be able to invade if b > 4c, i.e. if r ¼ c/(b ) c) < 0.2,
which is roughly confirmed by the numerical simulations.
It is worth pointing out that although spatial structure clearly favours cooperation in the PD (without spatial structure,

cooperators would never thrive), the region of parameter space in which cooperators can persist is rather small. In terms
of the spatial Hamilton’s rule above, this is because the average relatedness of an invading cooperator to its neighbours is
rather small. Thus, even though population viscosity is supposedly very high in lattice models with nearest–neighbour
interactions, cooperators tend to have few cooperating neighbours during an invasion attempt. This can in turn be
attributed to the fact that cooperators not only help each other, but also compete for lattice sites, thus limiting each other’s
proliferation.
In fact, Wilson et al. (1992) and Taylor (1992), and more recently West et al. (2002), have pointed out that population

viscosity not only increases relatedness among cooperatively interacting individuals, but also increases competition for
resources among relatives. West et al. (2002) show how these opposing effects can be incorporated into a modified version
of Hamilton’s rule that takes into account the relatedness of a cooperator to individuals who suffer increased competition
from recipients of the cooperative act. The earlier results of Wilson et al. (1992) and Taylor (1992) indicated that the
conditions for cooperation to thrive are exactly the same in well-mixed and in spatially structured populations, and hence
that spatial structure may actually have no effect on the evolution of cooperation. However, these results may be too
pessimistic, as spatial structure can favour cooperation not only in the spatial PD, but also in the corresponding lattice
models for the Public Goods game (Mitteldorf & Wilson 2000; Hauert et al. 2002b; Szabó & Hauert 2002; see Box 3 for
an explanation of the Public Goods game). In fact, the effect that competition between relatives counteracts kin selection
is likely to be most pronounced in such lattice models, in which game interactions and competition occur among nearest
neighbours. Moreover, Le Gaillard et al. (2003) have argued that through the minor change of allowing for empty lattice
sites, the effect of competition between relatives becomes much weaker. In situations in which reproduction is local, but
competition is global, e.g. because of high dispersal a scenario that Wilson et al. (1992) called !alternating viscosity",
competition between relatives will not be effective in impeding the evolution of cooperation through kin selection. West
et al. (2001) described an empirical example in fig wasps where intense local competition can indeed prevent cooperation
despite potentially strong kin selection, and they supported this idea with recent microbial experiments (Griffin et al.
2004). In general, the extent to which local competition can counteract the beneficial effects of population viscosity in
natural systems will critically depend on the particular form of population structure, and on the stages in the life cycle that
are affected by cooperative acts (Wilson et al. 1992; van Baalen & Rand 1998; Le Gaillard et al. 2003). These questions
deserve further theoretical as well as empirical investigations.
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Frank 1998), but continuous cooperative investments have
only rather recently been incorporated into the PD (Mar & St
Denis 1994; Killingback et al. 1999). In fact, it is straightfor-
ward to define a continuous version of the PD by assuming
that cooperative strategies are defined by a real number x that
lies in some interval [0, xmax], where xmax is the maximal
possible investment. One then assumes that the benefit that
an individual with trait value x provides to the opposing player
is given by a benefit function B(x), whereas the cost that
strategy x incurs to its carrier is given by a cost function C(x).
Thus, if two individuals with trait values x and y play the
continuous PD, player x gets the benefits from the cooper-
ative investments y and incurs the costs from its own
investment x, hence the payoff to player x is B(y) ) C(x).
Similarly, the payoff to y is B(x) ) C(y). Typically, one
assumes that the functions B(x) and C(x) are monotonically
increasing and satisfyB(0) ¼C(0) ¼ 0, as well asB(x) > C(x)
at least for small x (otherwise mutual cooperation would be
bad). For example, these functions could be linear: B(x) ¼ bx
andC(x) ¼ cx, with b > c > 0. In such continuous games one
would like to know the evolutionary dynamics of the
cooperative trait x. In the section on the continuous
Snowdrift game, we briefly describe how the theory of
adaptive dynamics can be used as a general approach to
investigate continuous games. For the continuous PD it is
easy to see, and intuitively clear, that the trait x always evolves
to 0, essentially because the cooperative trait only affects
costs, but not the benefits of its carrier. Thus, defection
prevails in the continuous PD and once again turns to
investigating supporting mechanisms that can cause the
trait x to evolve to non-zero levels.

The extensions considered to date are iteration, and spatial
structure. In the continuous IPD, players make continuous
cooperative investments over a number of rounds. For
example, the investment in round n + 1 can be based on the
opponent’s investment in round n: xn+1 ¼ f(yn). Wahl &
Nowak (1999a,b) have investigated the case where the
function f is linear: xn+1 ¼ kyn + d. Cooperative strategies
are characterized by high values of k and d, because when such
strategies play against themselves, iteration quickly leads to
large cooperative investments, and hence to large payoffs [in
each round, payoffs are calculated as for the continuous PD,
i.e. based on the benefit and cost functions B(x) and C(x)].
Wahl & Nowak (1999a,b) analysis is rather complex, but the
general picture that emerges is nicely summarized in Figure 7
of their second paper (Wahl & Nowak 1999b): more
cooperative strategies can gradually evolve, but once
cooperation has reached a certain level, it becomes vulnerable
to invasion by defecting strategies. This results in ever lasting
cycles between cooperation and defection. In particular,
cooperation cannot be stablymaintained in this type ofmodel.

In a similar vein, Roberts & Sherratt (1998) have devised
a class of !raise-the-stakes" strategies for iterated interactions

that consist of increasing cooperative investments in
response to an opponent’s cooperation in the previous
round. They have argued that these strategies do well against
a number of traditional strategies in the IPD, such as TFT.
However, in a continuous strategy space, evolutionary
dynamics would gradually decrease cooperative investments
in raise-the-stakes strategies (Killingback & Doebeli 1999).
Thus, cooperation seems to be generally difficult to maintain
in the continuous IPD if future investments are solely based
on the current investment of the opposing player.

Things turn out to be different if investments in round
n + 1 are based not just on the investment of the opponent,
but on the net payoff received in the previous round. Here,
xn+1 ¼ f(pn), where pn ¼ B(yn))C(xn) is the payoff that an
individual playing xn received when playing against yn.
Killingback & Doebeli (2002) have analysed the case where
the function f is linear, so that xn+1 ¼ kpn + d. Cooperative
strategies are again characterized by high values of k and d, but
it should be noted that determining the dynamics of the
investment levels during a single iteration is already a non-
trivial problem. Nevertheless, Killingback & Doebeli (2002)
have shown that cooperative strategies evolve if the benefits
B(x) increase fast enough for small investments [i.e. whenever
the slope B ¢(0) is sufficiently large]. Thus, when continuous
investments are based on previous payoffs, cooperation can
evolve and persist in the continuous IPD. This echoes the
findings from the classical IPD, where Pavlov-like strategies
are generally more successful than TFT-like strategies that
base their behaviour on the opponent’s previous move, rather
than on previous payoffs.

Interestingly, cooperation does not evolve if the continu-
ous IPD is used as a model for mutualism between two
different species. In this case, payoffs are obtained from
continuous IPD interactions between members of different
species, but competition for reproduction based on these
payoffs occurs within species (Doebeli & Knowlton 1998).
Scheuring (2005) has recently shown analytically that in this
setting, cooperative strategies do not evolve in unstructured
populations. However, Doebeli & Knowlton (1998) have
shown that the evolution and maintenance of cooperation,
and hence mutualism, are possible if the two interacting
populations are spatially structured. Moreover, spatial
structure can promote cooperation even in the continuous
PD without iteration (Killingback et al. 1999), and can lead
to coexistence of two distinct phenotypic clusters of high
and low investors (Koella 2000). For lattice games with
variable population sizes, the results of van Baalen & Rand
(1998) and particularly those of Le Gaillard et al. (2003)
imply that evolution of cooperation in the continuous PD
should be the default expectation in spatially structured
populations. Overall, it appears that the same mechanisms
that support cooperation in the classical PD can promote
cooperation in the continuous PD.
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Other extensions of the PD

Iteration, spatial structure, and continuous investments, as
described in the preceding paragraphs, are but three general
types of extensions of the basic PD. Another important
generalization consists of extending the PD to interactions
among more than two players. The resulting N-player games
are called Public Goods games and have a long tradition in
the economics literature (Kagel & Roth 1995). Box 3
explains some basic aspects of Public Goods games and
highlights interesting consequences of optional participation
in such games. A different line of extensions of the PD is
based on the idea that individuals may carry a reputation,
and that players can condition their behaviour on the
opponents" reputation. This leads to the notion of indirect
reciprocity (Alexander 1987; Nowak & Sigmund 1998;

Panchanathan & Boyd 2004), which is the basis for the
mechanisms of reward and punishment favouring coopera-
tion in PD interactions. These concepts are explained in
Box 4.

A related idea consists of considering tag-based games, in
which cooperative interactions occur between individuals
that are similar with respect to some neutral characteristic
such as colour (Riolo et al. 2001; Hochberg et al. 2003;
Axelrod et al. 2004). Tag-based cooperation appears to be
prone to exploitation by unconditional cheaters (Roberts &
Sherratt 2002), but further investigations of this interesting
idea are called for. Overall, judging from the number of
recent publications in high profile journals dedicated to the
study of cooperation based on PD interactions, it is clear
that this is a thriving line of research that attracts a lot of
interest from a diverse array of scientists.

Box 3: Public Goods games and volunteering

The generalization of PD type interactions to groups of arbitrary size N is known as Public Goods games (Kagel & Roth
1995). In a typical Public Goods experiment a group of, e.g. six players gets an endowment of $10 each. Every player then has
the option to invest part or all of theirmoney into a common pool knowing that the experimenter is going to triple the amount
in the pool and divide it equally among all players regardless of their contribution. If everybody invests their money, each
player ends upwith $30. However, each invested dollar only yields a return of 50 cents to the investor. Therefore, if everybody
plays rationally, no one will invest, and hence the group of players will forego the benefits of the public good. In formal terms
and assuming that players either defect or fully cooperate, the payoff for defectors becomes Pd ¼ a nc c/N, while the payoff
for cooperators is Pc ¼ Pd ) c, where a is themultiplication factor of the common pool, nc the number of cooperators in the
group, and c is the cost of the cooperative investment. As in the PD, defection dominates and cooperators are doomed. In
fact, a Public Goods game in a group of sizeN is equivalent to (N ) 1) pairwise PDs under the transformation b ¼ a c/N,
c ¼ (N ) a)/[N(N ) 1)] c (Hauert & Szabó 2003). Under this equivalence, larger Public Goods groups correspond to
larger numbers of single PD interactions. This implies that defectors can exploit cooperatorsmore efficiently in larger groups,
and hence that cooperation becomes increasingly difficult to achieve, which remains true even if interactions are iterated
(Boyd&Richerson 1988; Hauert & Schuster 1998;Matsushima& Ikegami 1998). Interestingly, in experimental PublicGoods
games human subjects do not follow rational reasoning and often exhibit cooperative behaviour, thereby not only faring
much better, but also undermining basic rationality assumptions in economics (Fehr & Gächter 2002). From a theoretical
viewpoint, the reasons for this outcome are not fully understood but likely involve issues related to reward, punishment and
reputation (Milinski et al. 2002), some of whose basic features are explained in Box 4.
Another approach to overcome the Public Goods dilemma is to allow for voluntary participation, which can be modelled

by considering a third strategic type, called the loners (Hauert et al. 2002b). Loners are risk averse and instead of engaging in
the Public Goods game rely on a small but fixed income r [(a ) 1)c > r > 0, where (a ) 1)c is the payoff for mutual
cooperation and 0 the payoff for mutual defection]. This results in a rock-paper-scissors type dominance hierarchy of the
three strategies: if everybody cooperates it pays to switch to defection, if defection dominates it is better to abstain and choose
the loners option, and if loners abound, cooperation becomes attractive again, because it is likely that the effective group size
in the Public Goods interaction is small and produces high returns. As a result, cooperators and defectors co-exist with
oscillating frequencies. Thus, voluntary participation provides an escape hatch out of states ofmutual defection and economic
stalemate. Interestingly, the average payoff of all three strategic types, and hence the average population payoff, converges to
the loner’s payoff r (Hauert et al. 2002a), which is better than a population payoff of 0 that would evolve in the absence of
loners. The above dynamics of voluntary Public Goods interactions has recently been observed in experiments with humans
(Semmann et al. 2003). We also note that in spatial voluntary Public Goods games, in which individuals interact only with a
limited local neighbourhood (see section Spatial PD games), the average population payoff is usually greater than r, i.e. the
population draws a net profit from voluntary Public Goods interactions.
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Q

eLoners eDefectors

eCooperators

Figure A Replicator dynamics of the voluntary Public Goods game. The three homogenous states of the population eloners, ecooperators
and edefectors are unstable, reflecting the rock-scissors-paper type dominance hierarchy between cooperators, defectors and loners. There
is an interior neutrally stable fixed point Q that is surrounded by neutrally stable closed orbits. True stability of Q or interior limit cycles
can be obtained through various extensions of the model, e.g. by introducing spatial structure. Parameters: n ¼ 5; a ¼ 3; c ¼ 1; r ¼ 1.

Box 3: continued

Box 4: Cooperation through reputation

Direct reciprocity can establish cooperation in repeated interactions following the simple rule !I help you and you help
me". However, in higher organisms, and humans in particular, cooperation may also be established through indirect
reciprocity: !I help you and someone else helps me" (Alexander 1987). The basic idea is that an individual can improve its
reputation, or image score, by helping fellows in need. It thereby produces a costly signal, which in turn will be assessed by
other members of the population and may trigger assistance in case the individual itself is in need. Indirect reciprocity
requires some consensus about how behaviour affects reputation. How such a consensus is reached is an interesting
question in itself that deals with the establishment of social norms (Henrich et al. 2001). If higher image scores increase the
chance of receiving help in the future, then discriminating strategies that condition their help on an acceptable image score
of the recipient can promote cooperation (Nowak & Sigmund 1998). However, such scoring strategies have one weakness:
whenever they refuse to help a cheater with a low score, their own score drops and reduces the chances of future help. To
avoid this, the concept of standing was introduced, whereby the individual remains in good standing if it refuses to help an
!unworthy" recipient (Leimar & Hammerstein 2001). This concept could be taken even further by demanding that an
individual attains bad standing for helping an unworthy cheater. Investigating these questions is an active field (Brandt &
Sigmund 2004; Ohtsuki & Iwasa 2004) and includes interesting experimental studies indicating that humans tend to favour
the simpler scoring strategies (Wedekind & Milinski 2000; Milinski et al. 2002).
The concept of reputation also lends itself to studying the role of punishment and reward for cooperation. Punishment

is common in nature (Clutton-Brock & Parker 1995), ranging from simple forms of spiteful toxin production in bacteria
(Kerr et al. 2002) to institutionalized civil and criminal law in humans. The success of cooperators hinges on the ability to
condition cooperation on information about the opponent’s reputation, i.e. about whether the opponent punishes
defection, and to adjust the behaviour accordingly (Sigmund et al. 2001; Brandt et al. 2003; Hauert et al. 2004). Such
interactions with second thoughts occur in two stages: first individuals decide whether to cooperate or to defect; second,
individuals may punish the opponent conditioned on the outcome of the first stage. This results in four basic behavioural
types: the social strategy G1 that cooperates and punishes defection, the paradoxical strategy G2 that defects but punishes,
the asocial G3 strategy that neither cooperates nor punishes, and finally the mild G4 strategy that cooperates but does not
punish. G2 is paradoxical because it does poorly when facing other G2 players. In evolving populations, the asocial G3

eventually reaches fixation. The reason for this is that the social G1 cannot discriminate between other G1 and G4 players.
Hence G4 players can increase in numbers through random drift and thereby facilitate successful invasions by the asocial
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G3. This outcome changes dramatically if reputation is introduced, i.e. if individuals may learn about the punishing
behaviour of their opponent and adjust their cooperative behaviour accordingly. This is illustrated in Fig. B. In spatially
structured populations in which interactions are limited to the nearest neighbours (cf. section Spatial PD games),
punishment also promotes cooperation, and quite intriguingly can even enforce cooperation if the costs of cooperation
exceed the benefits (Brandt et al. 2003).
In contrast to punishment scenarios, rewarding mechanisms seem to be limited to higher organisms, and perhaps even

to humans. Interestingly, already the simplest models indicate that such mechanisms lead to complicated dynamics that
make it much more difficult to establish and maintain cooperation (Sigmund et al. 2001). This is essentially because
rewarding individuals are easily exploited, while it is impossible to exploit punishers. Consequentially, rewarding
mechanisms do not allow for similarly clear-cut conclusions as are possible for the case of punishment.

G1 G2

G3G4

m

Figure B Dynamics of the PD with punishment and reputation. The four-dimensional strategy space foliates into invariant manifolds
because, (x1x3)/(x2x4) is an invariant of the dynamics, where xi denotes the frequency of strategy Gi. The dynamics is illustrated on the
manifold given by (x1x3)/(x2x4) ¼ 1. The figure illustrates that reputation leads to bi-stable dynamics. Depending on the initial
configuration, the population evolves either towards a pure social G1 state or a purely asocial G3 state. The basin of attraction of the two
states is determined by the cost/benefit ratio of cooperation, as well as by the cost/fine ratio of punishment. It can be shown that under
rather general conditions the social strategy G1 has the larger basin of attraction (Sigmund et al. 2001).

MODELS OF COOPERAT ION BASED ON THE
SNOWDR I F T GAME

The SD game derives its name from a situation in which two
drivers are trapped on either side of a snowdrift and have
the options of staying in the car or removing the snowdrift.
Letting the opponent do all the work is the best option, but
if the other player stays in the car it is better to shovel, lest
one never gets home (Sugden 1986). Similar situations occur
whenever the act of cooperation provides a common good
that can be exploited by others, but that also provides some
benefits to the cooperator itself. For example, yeast secretes
an enzyme that lyses their environment. The resulting food
resource represents a common good that can be exploited
by cells that do not secrete the enzyme. However, if no one

else cooperates, a single cell may be better off producing the
enzyme to prevent starvation, despite the prospects of being
exploited (Greig & Travisano 2004). The fundamental
difference between the PD and the SD is that in the SD,
cooperation is the better option than defection when the
opponent defects (Box 1). Consequently, cooperation is
maintained at a mixed evolutionarily stable equilibrium. The
SD has been used much less than the PD to study the
problem of cooperation, because persistence of cooperation
is not a problem. But since the SD is still a social dilemma
(Box 1), it is a legitimate question to ask which mechanisms
increase or decreases the evolutionarily stable proportion of
cooperators in the SD.

One approach to this question consists of extending the
SD by introducing additional strategies based on how

Box 4: continued
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individuals might behave in animal conflicts, such as
conditional strategies whose behaviour depends on what
the opponent does. Traditionally, such competitive interac-
tions have been discussed in the context of the equivalent
Hawk-Dove game (Maynard Smith 1982). For example the
strategy Retaliator, which starts by displaying (C) but
escalates (D) if the opponent does, is an ESS that coexists
with another ESS corresponding to the mixed C–D stable
state of the SD (Zeeman 1981; Maynard Smith 1982). Once a
population has adopted the Retaliator ESS, everybody ends
up cooperating, which is somewhat reminiscent of retaliating
strategies like TFT in the IPD. If one then considers the
additional strategy Bully, which starts by escalating (D) but
retreats (C) against D, then Retaliator remains an ESS, but it
now occurs together with a new ESS that consist of a Hawk-
Bully polymorphism (Zeeman 1981; Maynard Smith 1982).

In a similar vein, one can consider behavioural asymme-
tries between opposing players. For example, whether
individuals play D or C (i.e. Hawk or Dove) could depend
on whether they do or do not hold a territory. Thus the
strategy Bourgeois, which escalates (D), when it is the
holder of a territory, but retreats (C) when it is not, is
evolutionarily superior to both C and D under suitable
conditions, e.g. when the chance of being the holder of a
territory is 1/2 for all individuals (Maynard Smith 1982).
Other asymmetric strategies have been investigated for
example by Dubois et al. (2003) in the context of foraging
theory. In particular, asymmetric strategies have been
implicated in the evolutionary origin of food sharing in
humans (e.g. Blurton Jones 1984).

Iterated interactions in the SD game have only recently
been considered (Posch et al. 1999; Dubois & Giraldeau
2003). For example, Posch et al. (1999) study the role of
aspiration levels in generalized deterministic win-stay, lose-
shift strategies in 2 2 games, which include the SD and the PD,
and show that the strategy Pavlov can establish cooperation
in both games. The results of Dubois & Giraldeau (2003)
suggest that iteration generally promote less aggressive, and
hence more cooperative, behaviour. This indicates that
iteration may be generally beneficial for cooperation in the
SD game. Similar conclusions were reached by McElreath
(2003), who studied the effects of indirect reciprocity in the
Hawk-Dove game by considering iterated games with
randomly selected opponents in each round. Good standing
is obtained by defecting against defectors, and bad standing by
cooperating with defectors. McElreath (2003) showed that a
strategy termed !tough", which defects if the opponent defects
or has bad standing, but cooperates otherwise, often does
well. Since this strategy cooperates with itself, these results
show that the social dilemma of the SD game can be solved
through indirect reciprocity in iterated games. However, other
forms of reputation can hinder cooperation in this game
(Johnstone 2001), and further investigations of reciprocity

and iteration are needed to clarify their role for cooperation in
the SD game.

Finally, an extension that seems natural is obtained by
considering general N-player SD games. Box 5 outlines a
general framework for social dilemmas in groups of arbitrary
size that can be used to investigate the N-player SD game.
Overall, the literature on the SD game is less extensive than
that on the PD game. However, recent developments may
help us to appreciate that the SD game can be a very useful
metaphor for studying the problem of cooperation, as
described in the next two sections.

Spatial SD games

Like any evolutionary game, the SD can be played on a
spatial lattice by assuming that game interactions as well as
competition for reproduction occurs locally among neigh-
bouring individuals that occupy sites on a spatial lattice.
Killingback & Doebeli (1996, 1998) were among the first to
consider such spatial SD’s. They showed that spatial
structure facilitates the spreading of strategies such as
Retaliator, which are reminiscent of the !nice", !provocable"
and !forgiving" strategies that play a central role in the
evolution of cooperation based on the IPD (Killingback &
Doebeli 1996). However, for the classical SD it has been
realized only recently that, in stark contrast to the spatial
PD, spatial structure is generally detrimental to cooperation,
so that the fraction of cooperators in structured populations
is generally lower than in well-mixed populations (Hauert &
Doebeli 2004). More precisely, as in the PD spatial structure
does favour cooperation in the SD for high benefits and
small costs of cooperation (Fig. 2). However, already for
moderate cost-to-benefit ratios, spatial structure results in
lower frequencies of cooperators than expected from the
well-mixed SD. This finding is robust against changes in the
neighbourhood size and update rules, and it is supported by
pair approximation (Fig. 2).

To understand why spatial structure has such contrary
effects on cooperation in the SD and the PD, one needs to
look at the geometry of cluster formation in spatial games.
As we have illustrated in Fig. 1b, cooperators survive in the
spatial PD by forming large, compact clusters. In contrast,
in the spatial SD cooperators form small filament-like
clusters (Fig. 2). These spatial patterns arise from local
processes that are dictated by the payoff structure of the
SD, which makes it advantageous to adopt strategies that
are opposite to neighbouring strategies. As a consequence,
an isolated cooperator acts as a seed for expanding
dendritic structures, but lacks the ability to give rise to
compact clusters (see Fig. 2c in Hauert & Doebeli 2004;
Hauert 2005). On average, these emergent spatial patterns
generate an advantage for defectors, owing to increased
exploitation in the fractal-like zone of contact between the
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two strategies. This leads to an overall reduction in
cooperators as compared with well-mixed SD populations,
an effect that is most pronounced for high values of the

cost–benefit ratio. Thus, the spatial SD game illustrates that
spatial structure may not be universally beneficial for
cooperation. As was illustrated in Box 2, the potential

Box 5: Snowdrift games in groups of arbitrary sizes

In analogy to the generalization of the PD to the Public Goods games (cf. Box 3), the pairwise SD can be generalized to
interactions in groups of arbitrary size. In such N-player games, cooperators again contribute to a public good that is
shared equally among group members regardless of their contributions, but now the marginal gain of additional
provisions provided by each additional cooperator decreases with increasing numbers of cooperators (Hauert et al. 2005).
For example, food provided by the first cooperator may be essential for an individual’s survival, whereas additional
food items are no longer vital and are thus less valuable, until eventually further food provisioning becomes useless
because individuals are already saturated. This situation can be modelled by introducing a discount factor w such that the
payoff for defectors and cooperators is given by PD(k) ¼ b/N(1 + w + w2 + " " " + wk)1) ¼ (b/N)(1 ) wk)/(1 ) w)
and PC(k) ¼ PD(k))c, where k denotes the number of cooperators in the group. Hence, the first cooperator produces a
benefit b that is shared among all N members of the group (including itself), the second one increases everyone’s benefit
by wb/N, and so on, so that the last of the k cooperators in the group provides a benefit of wk)1b/N. If w ¼ 1, then all
cooperators provide the same benefit b/N. If w < 1, then the benefits are discounted and each additional cooperator
provides a lower benefit than the previous one. Note that one could similarly assume that the benefit of additional
provisions are synergistically enhanced (w > 1) such that each additional cooperator provides a higher incremental benefit
(Hauert et al. 2005).
The discounting framework provides a general framework to discuss cooperation: for c > b/N one recovers the Public

Goods game, in which defection is dominant, and for cN/b < wN)1 cooperation dominates. However, for
1 > cN/b > wN)1 the replicator dynamics for the frequency x of cooperators has a unique stable interior equilibrium
at x* ¼ [1 ) (cN/b)1/(N)1)]/[1 ) w]. This corresponds to a generalization of the pairwise SD. The smooth transitions
between the different game theoretical scenarios arising from variations of w, c or b allows discussions of cooperation in
different kinds of social dilemmas (e.g. PD interactions, SD interactions, and by-product mutualism) and for groups of
arbitrary size in a single framework. This may prove to be useful for empirical studies of cooperation (Connor 1995, 1996;
Dugatkin 1996; Milinski 1996, Box 6).
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Figure 2 The spatial SD. (a) Fraction of cooperators as a function of the cost-to-net-benefit ratio q ¼ c/(2b ) c). Solid (open) squares show
simulation results for synchronous (asynchronous) population updates. The solid line indicates predictions from pair approximation and the
dashed line from replicator dynamics for spatially unstructured populations. Except for very small q, the fraction of cooperators in the spatial
setting lies below the expectations from well-mixed populations (dashed line) and for sufficiently large q cooperators are eliminated
altogether. (b) The fact that in the SD the best action depends on the opponents move prevents the formation of compact clusters and
instead leads to filament-like structures as illustrated by a typical snapshot of the lattice configuration for q close to the extinction threshold of
cooperators.
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advantages arising for cooperators in spatially structured
populations can be related to kin-selection and to the
beneficial effects of inclusive fitness outweighing the
negative impact of competition among relatives. In
the spatial SD, the balance between these antagonistic
forces may change, thus leading to a disadvantage for
cooperators, but a thorough analysis of this conjecture
must be left for future research.

The continuous Snowdrift game

Just as in the continuous PD, it is natural to assume that
cooperative investments can vary continuously in the SD,
and that costs and benefits of cooperative acts are again
given by two functions B(x) and C(x). However, to define
the continuous SD, one assumes that investments yield a
benefit not only to the opponents, but also to the investing
individual itself (Doebeli et al. 2004). Therefore, the payoff
to an x-strategist interacting with a y-strategist is P(x, y) ¼
B(x + y)C(x), where B(x + y) specifies the benefit that the
x-strategist obtains from the total cooperative investment
made by both agents, and C(x) specifies the cost incurred to
the x-strategist because of its own investment.

In contrast to the continuous PD, the outcome of the
evolutionary dynamics of investment levels in the continu-
ous SD is not obvious and, in fact, can exhibit surprising
features. The evolution of the continuous trait x can be
analysed using the mathematical framework of adaptive
dynamics (Dieckmann & Law 1996; Metz et al. 1996; Geritz
et al. 1998). We refer to Doebeli et al. (2004) for the details
of this analysis, and we only summarize the main findings
here. In general, the evolutionary dynamics depend on the
form of the cost and benefit functions B(x) and C(x). If
these functions are quadratic, so that B(x) ¼ b2x

2 + b1x and

C(x) ¼ c2x
2 + c1x, the following types of evolutionary

dynamics can occur (Fig. 3): first, the trait x may either
monotonically increase or decrease over evolutionary time,
in which case either pure defection or full cooperation
evolves (which of these scenarios occurs may or may not
depend on initial conditions, Fig. 3c–e). Second, the trait x
may evolve to some intermediate value x* that represents an
ESS (Fig. 3b). In this case, an intermediate level of
cooperation evolves in the population. Third, the trait x
may evolve to some intermediate value x* that represent an
evolutionary branching point, i.e. a fitness minimum. In this
case, the population splits into two distinct and diverging
phenotypic clusters (Fig. 3a), one making very low and the
other very high cooperative investments. Thus, after
convergence to some intermediate level of cooperation,
the population diversifies into co-existing defector and
cooperator lineages. It is interesting to note that these
lineages engage in interactions that take the form of the
classical SD. Hence adaptive dynamics of continuous
strategies yields a natural explanation of the evolutionary
emergence of the pure cooperator and defector strategies of
the traditional SD (see also Hauert 2005).

Continuous SD games await further exploration. For
example, more complicated benefit and cost functions can
generate more complex evolutionary dynamics, and there are
a number of ways in which one can envisage extending the
analysis to interactions in larger groups, i.e. to N-player
continuous SD games (Doebeli et al. 2004). Nevertheless, the
results obtained so far illustrate a principle termed the
!Tragedy of the Commune" (Doebeli et al. 2004): in a
cooperative system in which every individual contributes to
a common good and benefits from its own investment,
selection does not always generate the evolution of uniform
and intermediate investment levels, but may instead lead to
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Figure 3 Classification of evolutionary dynamics in the continuous SD for quadratic cost and benefit functions B(x) ¼ b2x
2 + b1x, C(x) ¼

c2x
2 + c1x. Darker shades indicate higher frequencies of a trait value. The singular strategies (dashed vertical lines) are indicated where

appropriate. (a) Evolutionary branching (the dashed vertical line indicates the evolutionary branching point). (b) ESS (indicated by the dashed
vertical line); we note that, in accordance with social dilemmas, the population payoff is not maximized at the ESS (Doebeli et al. 2004).
(c) Evolutionary repellor (indicated by the dashed vertical line): depending on the initial conditions, the population either evolves to full
defection or to full cooperation (two distinct simulations shown). (d) and (e) Unidirectional evolutionary dynamics in absence of singular
strategies; in (d), cooperative investments decrease to zero – just as in the continuous PD; in (e), full cooperation evolves. Parameter values:
population size n ¼ 10 000, standard deviation of mutations 0.005, mutation rate 0.01 (i.e. on average one mutation in the investment level
per 100 offspring), and the following cost and benefit parameters: (a) b2 ¼ )1.4, b1 ¼ 6, c2 ¼ )1.6, c1 ¼ 4.56; (b) b2 ¼ )1.5, b1 ¼ 7, c2 ¼
)1, c1 ¼ 4.6; (c) b2 ¼ )0.5, b1 ¼ 3.4, c2 ¼ )1.5, c1 ¼ 4.0; (d) b2 ¼ )1.5, b1 ¼ 7, c2 ¼ )1, c1 ¼ 8.0; (e) b2 ¼ )1.5, b1 ¼ 7, c2 ¼ )1, c1 ¼ 2.
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an asymmetric stable state in which some individuals make
high levels of cooperative investments and others invest little
or nothing. In humans, the Tragedy of the Commune could
lead to conflicts based on the accepted notion of fairness.
More generally, it could serve as a paradigm for the evolution
of division of labour, thus potentially shedding light on
problems such as the origin of multicellularity. The Tragedy
of the Commune contrasts with the famed !Tragedy of the
Commons" (Hardin 1968), which occurs when cooperative
acts only benefit others, and in which selection will act to
eliminate altruism altogether, even though populations of
altruists outperform populations of non-altruists. The more
interesting, and perhaps often more realistic dynamics
represented by the Tragedy of the Commune underlines
the potential usefulness of extending the study of cooper-
ation from PD interactions to more general types of
interactions, notably those in which it only pays to defect if
others are cooperating. Various such scenarios have recently
been classified and studied by Jaffe (2004), and they might
apply to many biological as well as sociological systems, as we
will briefly discuss in the next section.

OUT LOOK

The successful promotion of cooperation hinges on positive
assortment of cooperators, i.e. requires more frequent
encounters of mutual cooperation than would be expected
with entirely random encounters between different beha-
vioural types (Queller 1985; Fletcher & Zwick 2004).
Essentially all mechanisms capable of promoting coopera-
tion do so by generating positive assortment between
cooperative types: in repeated interactions successful
strategies increase the number of rounds of mutual
cooperation, in spatially structured populations clustering
of cooperators naturally generates assortment, and with
reward, punishment or indirect reciprocity, cooperation is
conditioned on the recipient’s reputation in order to
decrease the propensity to support cheaters.

Generally speaking, positive assortment benefits cooper-
ation in both the PD and the SD, because both games
represent social dilemmas. However, whereas positive
assortment is vital for cooperators in the PD, in which
defection is dominant, persistence of cooperation does not
hinge on positive assortment in the SD, in which
cooperation can invade when rare. As a consequence of
this fundamental difference, the effects of introducing
additional structures and mechanisms can differ significantly
between the two games. This is nicely illustrated in spatially
structured populations: in the spatial PD, cooperators thrive
by forming compact clusters, but because in the SD it is
always best to cooperate if opponents defect, a different
cluster geometry emerges in the spatial SD that ultimately
decreases the frequency of cooperators. The fundamental

difference between the PD and the SD also manifests itself
with continuous investments, which generate the Tragedy of
the Commons in the PD, representing the loss of altruism,
but can result in the Tragedy of the Commune in the SD,
representing diversification in cooperative investments.

The majority of game theoretical investigations of the
evolution of cooperation are based on replicator dynamics.
While this is certainly an excellent starting point that comes
equipped with powerful and sophisticated mathematical
theory, this approach generally harbours the significant
deficiency of not taking ecological dynamics into account. It
is becoming increasingly clear that considering the feedback
and interplay between ecological and evolutionary dynamics is
essential for understandingmany evolutionary processes, as is
exemplified by the many insights generated by the theory of
adaptive dynamics (Geritz et al. 1998) in recent years. While
some models have studied the effects of varying population
sizes on the evolution of cooperation (e.g. Nowak et al. 1994b;
van Baalen & Rand 1998; Harms 2001; Aviles 2002; Le
Gaillard et al. 2003), this is mostly uncharted territory. To see
why incorporating ecological aspects might be important for
understanding the dynamics of cooperation, consider a
situation in which defection has a detrimental effect on per
capita growth rates. Then, if defection dominates, population
density decreases, which could in turn lead to smaller groups
of interacting individuals. But small interaction groups might
be more conducive to cooperation, as e.g. exemplified by the
Public Goods Game (Box 3). Thus, a feedback of strategy
frequencies on ecological dynamics could lead to the
maintenance of cooperation.

Incorporating ecological dynamics into models of
cooperation appears to be challenging, because the resulting
models can become rather complicated (Harms 2001; Aviles
2002; Le Gaillard et al. 2003), but it is likely very important
for linking theoretical results with empirical studies. In fact,
we feel that in order to achieve future progress in
understanding the evolution of cooperation, the close
collaboration of theoreticians and experimentalists is of
utmost importance. The research reviewed in this article is
proof that even two very simple theoretical metaphors, the
PD and the SD, can give rise to a wealth of theoretical
insights on cooperation. To a large extent, it remains to be
seen which of these results are most relevant for natural
systems. There are numerous promising empirical systems in
which various aspects of the problem of cooperation can be
studied. Some of these are outlined in Box 6. In particular,
microbial microcosms appear to be well suited for experi-
mental investigations of cooperative investments and the
Tragedy of the Commune (Box 6). Bridging the gap
between theoretical and empirical research and establishing
tight and mutually inspiring cooperation between these two
approaches is a major challenge for further progress in
understanding the evolution of cooperation.
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Box 6: Empirical examples

The models described in this review have potential applications in a wide array of natural systems, ranging from
microorganisms to humans. In this box, we briefly list some empirical model systems that have been or could be
used for investigations of the problem of cooperation.

Microorganisms: In general, microbial systems are very promising for conducting experimental evolution studies for a
variety of reasons, e.g. because of their short generation times, because they are comparatively easy to handle, and because
a wealth of pertinent genetic and physiological information is available. In particular, such systems may prove to be very
useful for studying cooperation (Travisano & Velicer 2004).

Viruses: When viruses co-infect a cell, the replication enzymes they produce represent a common resource (e.g. Huang &
Baltimore 1977, pp. 73–116). Turner & Chao (1999) showed that interactions between RNA phages co-infecting bacteria
are governed by a PD in which viral cooperation is determined as the production of diffusible intracellular products. The
same authors subsequently suggested that these interactions evolve into a SD with co-existing cooperators and cheaters
(Turner & Chao 2003), thus potentially providing an example of the Tragedy of the Commune (Doebeli et al. 2004). More
generally, when viruses co-infect a cell, the replication enzymes they produce are a common resource. Defective interfering
particles (Huang & Baltimore 1977), which lack the coding regions for the replication enzymes, might evolve according to
the Tragedy of the Commune.

Yeast: The single-celled yeast Saccharomyces cerevisiae secretes an enzyme to hydrolyze sucrose (Greig & Travisano 2004).
Since the enzyme is a common resource, the Tragedy of the Commune may apply, suggesting that there might exist yeast
populations in which some cells produce the enzyme, while others do not, and simply use the enzyme produced by other
cells. Exactly this situation has been engineered experimentally by Greig & Travisano (2004). It would be interesting to
study the evolution of this polymorphism under various experimental conditions.

Antibiotic resistance in bacteria: Resistance to b-lactam antibiotics is often because of bacteria secreting an enzyme, b-lactamase,
that is responsible for inhibiting bacterial cell wall synthesis (Neu 1992). Since the b-lactamase is secreted outside the
bacteria, it is a common resource. The Tragedy of the Commune would imply that, in certain situations, bacterial
populations might evolve into two distinct subpopulations, consisting of high and low b-lactamase producers.

Spore formation and swarming in bacteria: Wild-type strains of Myxococcus xanthus exhibit cooperative swarming mediated
by extracellular pili (Velicer & Yu 2003). In lineages of M. xanthus unable to make pili, alternative mechanisms of
cooperative swarming readily evolve (Velicer & Yu 2003). Myxococcus xanthus also aggregates into spore producing fruiting
bodies during starvation, and one can find mutants with anti-social behaviour (Velicer et al. 2000). Thus, M. xanthus
appears to be a promising system for further studies on cooperation, including the question of cooperative
polymorphisms.

Adhesion in bacteria: In heterogeneous environments, the bacterium Pseudomonas fluorescens forms cooperating groups by
producing an adhesive polymer, which plays the role of a common good. Rainey & Rainey (2003) showed that cooperation
(polymer production), is costly, but benefits the group. They propose that this system may be used to shed light on the
evolution of multi-cellularity. Interestingly, the social amoeba Dictyostelium discoideum implements a tag-based (c.f. section
Other extensions of the PD) mechanism for adhesive cooperation that is mediated by a single gene csA. If wild type cells
are mixed with csA-knockout cells, the wild types direct the benefits preferentially to other wild type cells (Queller et al.
2003).

Higher organisms: The study of cooperation has a long tradition in behavioural studies of higher organisms (Maynard
Smith 1982; Dugatkin 1997) and experimental economics (Kagel & Roth 1995). We list only a few prominent examples.

Collective hunting and territory defense in mammals: Detailed observations in lions and baboons, for example, support the notion
that selection would favour a state in which certain individuals invest heavily in hunting and territory defense, while others
invest little (Packer 1977; Packer & Ruttan 1988; Heinsohn & Parker 1995). Thus, such cooperative interactions may be
governed by the SD game.
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Predator inspection in fish: In many species, some individual fish move away from their shoal and approach a potential
intruder (Milinski 1987; Pitcher 1992). The information that the inspectors obtain can be viewed as a common resource
(Magurran & Higham 1988). Even though such systems have been investigated rather extensively (see e.g. Milinski et al.
1997), it is still debated whether predator inspection generally follows a PD, SD or by-product mutualism.

Egg trading in simultaneous hermaphrodites: During mating in seabass (Serranidae), individuals divide their eggs into parcels and
alternate with their mates in offering these parcels for fertilization. Brembs (1996) discusses this system in the context of
the IPD.

Sentinel behaviour in mammals: Group members of some animal societies take turns acting as sentinels. Clutton-Brock et al.
(1999) suggest that in meerkats (Suricata suricatta), guarding may be an individual’s optimal strategy if no other animal is on
guard and hence sentinel behaviour may be governed by SD interactions.

Blood sharing in vampire bats: When vampire bats fail to find food, they are often fed by successful roostmates. Wilkinson
(1984) suggested that these interactions may represent IPD interactions.

Cooperation in humans: There is a large literature on experimental studies in humans (e.g. Kagel & Roth 1995). Humans are
generally a very promising experimental system for game-theoretic models of cooperation. Fehr & Fischbacher (2003)
argue that experimental evidence indicates the ubiquity of human altruism, even though altruism and selfishness often
occur together, which points to the potential usefulness of the continuous SD as a mode for cultural evolution. Also, the
concepts of punishment and fairness (Fehr & Gächter 2002; Fehr & Rockenbach 2003), of indirect reciprocity (Wedekind
& Milinski 2000; Milinski et al. 2002), and of volunteering (Semmann et al. 2003) have been shown to apply in humans.
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