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Nonhierarchical competition between species has been proposed
as a potential mechanism for biodiversity maintenance, but theo-
retical and empirical research has thus far concentrated on systems
composed of relatively few species. Here we develop a theory of
biodiversity based on a network representation of competition
for systems with large numbers of competitors. All species pairs
are connected by an arrow from the inferior to the superior. Using
game theory, we show how the equilibrium density of all species
can be derived from the structure of the network. We show that
when species are limited by multiple factors, the coexistence of a
large number of species is the most probable outcome and that
habitat heterogeneity interacts with network structure to favor
diversity.

competitive exclusion ∣ rock-paper-scissor ∣ neutral theory ∣ niche theory

Ecologists have long sought to explain how a wide diversity of
species coexists in nature (1). Coexistence is a conundrum

because if two species share the same niche, the competitive ex-
clusion principle predicts the extinction of the inferior competitor
(2). This foundational principle continues to motivate advances
in niche and neutral theories (3–5) of coexistence, which use
niche differences and species equivalence, respectively, to avoid
competitive exclusion. However, each theory suffers shortcom-
ings. Field evidence that classic resource-based niche differences
are essential for coexistence is rare (6–8), whereas the species
equivalence assumption of neutral theory is hard to reconcile with
nature. These shortcomings justify the quantitative exploration of
less conventional niche mechanisms of coexistence.

Here, we ask how embedding pairs of superior and inferior
species in a network of competitors alters the outcome of com-
petition and influences patterns of relative abundance. We find
that although the competitive exclusion principle certainly holds
for any pair of competitors, when multiple factors determine the
outcome of competition and species are embedded in competi-
tive networks, a large number of species can coexist. The coex-
istence relies on the stabilizing effect of intransitivities (9–12)
that emerge in these networks rather than more traditional pair-
wise niche differences. By combining a game theoretical frame-
work with graph theory and dynamical systems (13, 14), we show
how the equilibrium abundance of all species can be determined
from the competitive network, how species diversity relates to
the number of limiting factors, and how spatial heterogeneity
combines with intransitivity to interactively favor diversity main-
tenance.

Model
The pairwise competitive relationships between species in a com-
munity can be expressed as a network, or more formally, a tour-
nament, in which species are the nodes and arrows connect
the competitive inferior to the superior competitor (Fig. 1A).
In the simplest case, where all species in a system compete for
a single limiting resource, their competitive abilities should be
transitive: Species A beats all others, B beats all but A, C beats
all but A and B, and so on. We therefore expect a single winner;
the best competitor will drive all others extinct. By contrast,
when at least one pair of species competes for a resource differ-
ent than the other pairs, we might observe intransitive competi-
tive relationships: In pairwise interactions, species A excludes B,

B excludes C, but C excludes A. This forms the familiar “rock-
paper-scissor” dynamic, which has been studied extensively, as it
can lead to the indefinite coexistence of the three species (10–12)
and facilitate the coexistence of many more species with the
appropriate consumer resource interactions (9, 15). In the tour-
nament representation of this very same problem, intransitive
relationships between competitors generate cycles (Fig. 1B).

Which type of competitive networks should we expect in
nature? Empirical work over the last several decades has shown
that multiple factors regulate the outcome of plant species inter-
actions, causing different plant species to compete for different
resources (16, 17) and limit one another via shared pathogens and
consumers (18). With such a diversity of mechanisms controlling
the interaction between competitors, a simple transitive hierarchy
is highly unlikely. However, the prevalence of intransitivities
will depend on whether superior competitors for one resource
tend to be superior for others. Because the empirical literature
is not clear on this matter (16, 19, 20), we initially assume that
species’ competitive ranks for different limiting factors are uncor-
related, an assumption we later relax.

To investigate the relationship among intransitivity, coexis-
tence, and the number of limiting factors, we begin with the
following scenario: Suppose we have three limiting factors and
seven species are ranked at random for each factor (Fig. 2A). For
each pair of species, there are two possible competitive relation-
ships: (i) One species is the superior for all factors (Fig. 2B, in
black) or (ii) one species is better for two of three factors (Fig. 2B,
in red). For the second case, we might expect the better compe-
titor in each pair to win in two-thirds of the tournaments. From
this “master tournament” (Fig. 2B) describing the ranking of the
n species for f factors, we can derive multiple possible networks.
For example, in Fig. 2C we report four tournaments generated
from the ranking of the species illustrated in Fig. 2A. More gen-
erally, we draw an arrow from A to B with probability NAB∕f ,
where NAB is the number of factors in which A is worse than B
and f is the number of factors (SI Text). We therefore assume each
factor is equally likely to determine the dominant in pairwise
competition. For a given network (e.g., one of those in Fig. 2C),
we consider a system in which large numbers of individuals inter-
act and compete with one another at random, leading to the loss
of the inferior individual after each bout of competition.

Results
Under the assumption of zero-sum dynamics (gains by one spe-
cies require losses by others) and mass-action interactions (the
interaction rate is proportional to species’ densities), we find that
the dynamics for a system composed of n competing species are
characterized by a unique equilibrium point (13, 14) (shown by
the lighter bars in Fig. 1C) and that the dynamics around the
equilibrium are linearly neutrally stable (SI Text). Therefore, after
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a transient phase in which some species may go extinct, the surviv-
ing species fluctuate with regular cycles (Fig. 1B). Moreover, we

can show that the average density of each species is that it would
attain at equilibrium. Thus, although the initial conditions deter-
mine the amplitude of the cycles around the equilibrium, the
average densities of the species eventually equal their equilibrium
value. In this respect, coexistence via intransitive competition is a
stabilizing niche mechanism—one that generates an advantage
when rare (21). Indeed, if a focal species is perturbed to low den-
sity, compositional shifts among the remaining competitors tend
to favor an increase in the focal species, albeit with cycles (SI Text).

Using a game theoretical framework, we can find the equili-
brium values for all species in an efficient way using linear
programming (13) (i.e., we can predict the average relative abun-
dances of the species without having to run the dynamical system,
Fig. 1C). For any tournament expressing the dominance relation-
ships between pairs of competitors, we can find the predicted
average density for each species when embedded in the compe-
titive network (SI Text). Using these techniques, we can show, for
example, that only a subset of species (shown in green) would
coexist for any given tournament in Fig. 2C. Note that all species
coexisting after the initial exclusions are part of intransitive cycles,
but membership in a cycle need not lead to persistence. For ex-
ample, speciesG,C,D, and F form an intransitive cycle in the top-
left tournament in Fig. 2C, but all fail to persist at equilibrium.

To examine how the number of limiting factors influences
the number of coexisting species, we repeat the same procedure
used to develop the network in Fig. 2, but for a larger number of
species and with varying numbers of limiting factors (for which
species rank is still randomly assigned). As in classic niche theory,
we find that an increasing number of limiting factors allows an
increasing number of species to coexist (Fig. 3A). In contrast
to traditional niche theory, however, species do not coexist be-
cause each species in a pair is limited by a different factor (all
pairs have a clear competitive rank). Instead, they coexist because
multiple limiting factors generate competitive intransitivities that
counter the outcome of each pairwise interaction in isolation.

When the number of limiting factors goes to infinity in our
competitive network framework, the probability of drawing an
arrow from species A to B is the same of that of drawing the arrow
from B to A (i.e., the probability of either species being the domi-
nant competitor is the same). This scenario defines a random
tournament, a limiting case that is particularly interesting because
one can derive several predictions analytically. For example, it
can be shown (13, 14) that in a random tournament composed
of n species, the probability of observing k number of coexisting
species at equilibrium is

A B C

Fig. 1. (A) Species’ competitive abilities can be represented in a tournament in which we draw an arrow from the inferior to the superior competitor for all
species pairs. A tournament is a directed graph composed by n nodes (the species) connected by nðn − 1Þ∕2 edges (arrows). (B) Simulations of the dynamics for
the tournament. The simulation begins with 25,000 individuals assigned to species at random (with equal probability per species). At each time step, we pick
two individuals at random and allow the superior to replace the individual of the inferior. We repeat these competitions 107 times, which generates relative
species abundances that oscillate around a characteristic value (SI Text). (C) The average simulated density of each species from B (shown in lighter bars) almost
exactly matches the analytic result obtained using linear programming (shown in darker bars).

A

C

B

Fig. 2. (A) The competitive abilities of species A–G are ranked at random for
three limiting factors. (B) Two possible competitive relationships can emerge:
(i) The inferior species is ranked lower than its competitor for all three factors
(e.g., C versus B, black arrows) or (ii) the inferior species is ranked lower than
its competitor for two factors (e.g., A and B, red arrows). (C) We can use this
information to “draw” tournaments: We draw an arrow from node i to j
with a probability equal to the proportion of factors for which species i is
ranked below j. For example, we draw the arrow A → B with probability
2∕3, whereas B → Awith probability 1∕3. In this way we can generate several
tournaments from the same set of competitive relationships in A. For each
tournament, we can find the equilibrium solution, and those species with
nonzero equilibrium densities coexist (in green), though the equilibrium is
neutrally stable.
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PðkjnÞ ¼
(
0 k is even� n
k

�
2−nþ1 k is odd :

This formula yields a nontrivial result: In the most basic com-
petitive network framework presented here, one can never ob-
serve an even number of coexisting species. This means that
without any pairwise niche differences, a system with an even
number of species will always collapse to a smaller one formed
by an odd number of species. In fact, for any tournament com-
posed of an even number of species, we can find a subtournament
composed of an odd number of species that collectively wins
against each of the remaining species more often than it loses,
eventually driving the other species extinct. At the low diversity
extreme, this finding reiterates the competitive exclusion princi-
ple; a two species system collapses to one species. Another con-
straint is that the proportional abundance of the dominant
species is either 1 (complete dominance) or less than or equal
to 1∕3. Abundances in between are not possible in this most basic
model (SI Text).

Another important finding from random tournaments is that
due to the symmetry granted by the binomial coefficient, the
probability of finding very few coexisting species is exactly that
of finding all but very few species coexisting. The most likely out-
come is the co-occurrence of half of the species pool (i.e., the
species in the master tournament). More formally, from this
equation, the expected number of coexisting species for a random
tournament composed by n species (13) E½kjn� ¼ n∕2 and the var-
iance Var½kjn� ¼ n∕4 (SI Text). Therefore, in this theory, with a
large number of limiting factors, species diversity is bounded only
by the size of the species pool; half of the members of the species
pool coexist independent of n.

Given the simplicity of the results for random tournaments, we
asked how many factors are necessary to closely approximate
these results. Specifically, we ask how many factors are needed
to attain the same level of coexistence we would observe in ran-
dom tournaments? As shown in Fig. 3A, when we increase the
number of factors, we rapidly increase the average number of
coexisting species: For one factor we have a single winner, but
with just two factors, an average of 4.17 of the initial 20 species
coexist. The fraction of coexisting species grows rapidly and then
saturates around the expected value for random tournaments
(50% of the species pool persisting). Importantly, just a handful
of limiting factors can generate the coexistence of many species, a
feature of intransitive networks (9, 15).

Clearly, this analysis assumes that species’ competitive ranks
for the various factors are independent, yet the correlation be-
tween these ranks is likely to influence dynamics (15). To explore
this influence, we first examined the coexistence resulting when

species ranks for the different factors are positively correlated
(SI Text). We find that such correlations reduce the number of
“effective factors,” such that we need many more limiting factors
to have the same level of coexistence as with uncorrelated ranks
(Fig. 3B). To explore the influence of a negative correlation
between factors, we examined a case where each species has a
limited amount of resource to allocate to various functions, so
that high competitive rank for one factor means lower competi-
tive rank for other factors (SI Text). Results show that such trade-
offs increase the number of effective factors, such that only a
handful of factors is required to generate the coexistence that
would be found in a tournament with uncorrelated ranks among
numerous factors (Fig. 3C). A particularly interesting case is
where we have just two limiting factors, and a trade-off between
them (SI Text). This generates a random tournament where half
of the species in the regional pool coexist on just two factors
(Fig. 3C).

Finally, we show how classic niche processes can combine with
intransitive competition to regulate the number of coexisting
species. Our model thus far has examined tournaments in spa-
tially uniform resource environments. To explore how spatial
niches combine with intransitive competitive interactions, we
simulated a system of 100 species ranked at random for five fac-
tors. The species compete in many patches, each of which is lim-
ited by a randomly assigned combination of up to five factors. All
species are initially present in all patches, but due to between
patch differences in the limiting factors, different tournaments
arise in different patches (following the logic outlined in Fig. 2 for
each patch). We assume no dispersal between patches, thereby
allowing us to use our analytical approach for estimating relative
abundance at the patch scale. The total relative abundance for all
species in the system is the average over all patches. See SI Text
for methodological details and other parameter combinations.

Results show that when just one factor is limiting in each patch,
we obtain no more coexisting species than limiting factors (five,
Fig. 4), reproducing a classic result (1, 2). However, with up to
two of five factors limiting each patch, thereby allowing intransi-
tive competitive networks to develop, we find around 50 coexist-
ing species (half the total species pool), demonstrating the large
additional contribution of intransitive competition in spatially
heterogeneous systems. Another important result is that even
though each individual patch still supports only an odd number
of species, summing abundances over all patches often gives an
even number of coexisting species in the system as a whole (SI
Text). In addition, the dominant competitors can obtain relative
abundances greater than 1∕3 of the community, eliminating a
second constraint of the more simple version of the model. Ad-
ditional flexibility in the relative abundance patterns and the

A B C

Fig. 3. Average number of species coexisting (�1 SD) when we perform the simulations described in the main text for a variable number of limiting factors
(x axis) and size of the species pool (colors). The blue line is for a 10 species pool, the red line for 20 species, and the green line for 30 species. Dashed lines mark
the theoretical expectation for an infinite number of factors. (Left to Right) (A) results obtained drawing the ranking for the species independently; (B) positive
correlation among factors; (C) trade-off among factors. Details are reported in SI Text.
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identity of the dominant species can be achieved by allowing
different patches to have different area or allowing ties between
species (SI Text).

Discussion
Ecologists have long appreciated that resource competitors can
indirectly benefit one another via the suppression of shared com-
petitors (22, 23). And more recent studies have demonstrated
that intransitivity in competitive networks can maintain diversity
(9, 10, 11, 15). However, in past work, very specific requirements
were necessary for intransitive networks to emerge, and in turn,
stabilize the interaction between competitors. This has given the
potentially false impression that such mechanisms might be con-
fined to a small number of natural systems (24). Here, by contrast,
we have shown that intransitive competitive networks are the
most likely outcome in systems with multiple limiting factors,
suggesting broad generality of the mechanism. In addition, by
showing how game theory, graph theory, and dynamical systems
allow one to move between the network structure and the relative
abundance of species, we open previously undescribed lines of
empirical inquiry into this mechanism of diversity maintenance.
Finally, our analytical approach allowed us to prove the potential
for unlimited coexistence, as well as demonstrate the limitations
of diversity maintenance via competitive intransitivity. The re-
quirement for an odd number of species, for example, would have
been difficult to notice, let alone prove, using simulations.

In our model, the abundances of the coexisting species are
characterized by a neutrally stable equilibrium. If the system is
perturbed away from the equilibrium, species cycle with a tem-
poral average density equal to their equilibrium value. The coex-
istence resulting from intransitive competitive networks is
stabilized in the sense that species’ densities averaged over the
cycle period converge to their equilibrium value (SI Text). Focal
species perturbed to low density tend to recover because the com-
position of competitors shifts in a way that favors the growth of
the focal species. Meanwhile those perturbed toward monodomi-
nance tend to decline. The intransitivities that stabilize this
coexistence depend on different factors determining dominance
between different pairs of competitors. These factors may corre-

spond to different resources, such as light or nitrogen, but will
also include factors determining dominance in apparent compe-
tition such as predators and pathogens.

One of the more striking results of our analysis is that for
random tournaments in spatially homogeneous environments,
the most likely number of coexisting species is n∕2, half the size
of the species pool. Coexistence is therefore unbounded in that
increases in the size of the species pool are not accompanied by a
leveling off of local diversity (25, 26). This leveling off, or “satura-
tion,” of local communities is commonly predicted by more tradi-
tional coexistence mechanisms, where exogenous niche structure
(e.g., resource heterogeneity) allows only so many species to
share a habitat. In our model, by contrast, the niche structure is
itself a function of the competitors’ relationships with one an-
other, and a larger species pool creates opportunities for more
species to coexist. As in other studies, the species pool in our
model is best considered to include all species dispersing into
a focal habitat. This follows from our finding that species’ equili-
brium relative abundances are independent of their initial den-
sities, provided that these densities are nonzero.

Our model makes several empirical predictions that can be
evaluated with field data. First, it predicts that with enough limit-
ing factors, local richness should be a constant fraction of the
total species pool. This is consistent with many empirical datasets
showing linear relationships between local and regional species
richness (25, 26). Second, we can ask how well an empirical re-
lative abundance pattern is described by the best fitting tourna-
ment. As we show in SI Text, our model provides very good fits to
abundance data from tropical forest tree assemblages and marine
faunal communities in kelp holdfasts. The general agreement
between the theory and common community patterns suggests
that the abundance and diversity patterns generated by our
model are not so inconsistent with nature to justify its rejection.
But this leaves unanswered the key question of whether intran-
sitive networks of competitive ability stabilize coexistence in real
communities.

Although several cases of rock-paper-scissor dynamics among
sessile organisms are well documented (27–29), it is difficult to
assess the true prevalence of these interactions. This question
can be partially answered by studies that compete all possible
pairs of plant species from a defined community. Although prior
reviews of such studies have emphasized that certain species
tend to win in competition and others tend to lose (30, 31), these
studies often show that some poorly ranked competitors (those
that tend to lose to other species) beat some species of generally
higher rank (those that tend to win), and sometimes of much
higher rank (32, 33). Importantly, these empirical results likely
underestimate the frequency of intransitive competitive relation-
ships because they are almost always conducted in greenhouse
pot experiments. Such settings artificially favor limitation by a
single resource, which in turn disfavors intransitivities (Fig. 3).

The strongest empirical tests of our model follow from its
ability to predict species’ relative abundances from the tourna-
ment structure. Specifically, one can first quantify the pairwise
interactions between all competitors in a community, and thereby
document the tournament structure. Second, the relative abun-
dance of each species predicted by the tournament structure can
be compared to their observed relative abundance in a natural
community. We attempted such an analysis with published data,
but were stymied by the rarity of studies combining unambiguous
competitive dominance results for a wide diversity of taxa with
natural patterns of relative abundance. A reasonable way forward
for quantifying competitive dominance might involve using field
data to parameterize mathematical models of competitive inter-
actions, such as Beverton–Holt or Ricker formulations (7). Alter-
natively, the outcome of pairwise competition can be directly
observed for species with clear patterns of overgrowth, such as
many marine invertebrates (27) or species with very short genera-

Fig. 4. The number of coexisting species as a function of the number of lim-
iting factors in spatially heterogeneous systems. The simulated systems con-
tain a pool of 100 species, competing in numerous patches, each of which is
limited by a combination of up to k factors of five total factors. For example,
the far left box shows the number of coexisting species in the system when
each patch is limited by only one of the five factors (SI Text).
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tion times. With this latter group in mind, protist microcosm sys-
tems might provide a starting point for testing model predictions.

One of the broader challenges in exploring the importance of
intransitive competition to coexistence in natural communities is
that more traditional niche mechanisms almost certainly operate
alongside competitive intransitivities, and the two can be difficult
to disentangle. For example, spatial variability in the identity of
limiting factors establishes different tournaments in different
locations, allowing many more species to coexist than would be
found in an environment without intransitive competition.

Although overcoming this methodological hurdle will require
innovative empirical approaches, we expect that competitive
networks may provide a better starting point for understanding
diversity maintenance than the simple two species competitive
exclusion principle.
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