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Abstract

I show how one can estimate the shape of a thermal performance curve using information theory. This approach ranks plausible

models by their Akaike information criterion (AIC), which is a measure of a model’s ability to describe the data discounted by the

model’s complexity. I analyze previously published data to demonstrate how one applies this approach to describe a thermal

performance curve. This exemplary analysis produced two interesting results. First, a model with a very high r2 (a modified Gaussian

function) appeared to overfit the data. Second, the model favored by information theory (a Gaussian function) has been used widely in

optimality studies of thermal performance curves. Finally, I discuss the choice between regression and ANOVA when comparing thermal

performance curves and highlight a superior method called template mode of variation. Much progress can be made by abandoning

traditional methods for a method that combines information theory with template mode of variation.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In a recent paper, Bulté and Blouin-Demers (2006) raised
two points concerning the estimation and analysis of
thermal performance curves. First, they noted thermal
performance curves have a natural shape, which one
should heed when seeking a statistical description. Second,
they argued the estimation of the thermal optimum by
ANOVA ignores important variation among individuals
within populations. These points merit serious considera-
tion by thermal biologists because they should influence the
manner in which we estimate and compare thermal
performance curves. In fact, these issues extend far beyond
the study of thermal performance curves and have played a
prominent role in previous debates among biologists.
Although the outcomes of these debates bear directly on
the problems of estimating and comparing thermal
performance curves, the approaches used by thermal
biologists have not changed much in several decades.
Here, I prescribe an approach that will enable thermal
e front matter r 2006 Elsevier Ltd. All rights reserved.
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biologists to avoid the pitfalls described by Bulté and
Blouin-Demers.

2. What is the true shape of a thermal performance curve?

Bulté and Blouin-Demers (2006) noted thermal perfor-
mance curves have a characteristic shape. Indeed, other
thermal biologists (including myself) have suggested a
general form can describe these curves (Huey and
Stevenson, 1979; Huey and Kingsolver, 1989; Angilletta
et al., 2002b). Typically, performance curves are bounded at
extreme temperatures and possess a single intermediate
mode. As Bulté and Blouin-Demers suggest, we should
avoid linear (or other) approximations of thermal perfor-
mance curves that differ fundamentally from the character-
istic shape. As an example, they compared the fit of linear
and nonlinear functions describing the relationship between
body temperature and food intake by lizards (data from
McConnachie and Alexander, 2004). Although a linear
function fit well over the range of 20–32 1C, a nonlinear
function described the data better over a broader range of
temperatures (20–35 1C). Bulté and Blouin-Demers criti-
cized McConnachie and Alexander (2004) for omitting the
data recorded at 35 1C and using a linear model to describe
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Fig. 1. The relationship between body temperature and sprint speed was

described using five functions. A comparison of AIC values indicated the

Gaussian function provides the best fit of the data (see Table 1). Each

datum is the mean of the sprint speeds of 12 individuals, whose

performance was measured at all temperatures (i.e., a repeated measures

design); data were taken from Angilletta et al. (2002a).
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the relationship. I feel certain that no one, including
McConnachie or Alexander, would seriously expect the
linear function to describe performance outside the range of
values used to fit the model; indeed, this assumption would
be unrealistic for any linear model. Still, Bulté and Blouin-
Demers raised an important issue for thermal biologists to
consider. How should we decide which statistical model
best describes a thermal performance curve?

Naively, we might fit several functions to our data and
choose the one that describes the greatest amount of
variation (i.e., the function that has the smallest residual
sum of squares (RSS) or the highest r2). Although this
function would certainly describe our data well, it may not
reflect the mean performance curve of the individual or
population that we sampled. Consequently, any conclusions
drawn or predictions made from this function could be
erroneous. Why? The problem stems from over-fitting the
data (Burnham and Anderson, 2002). A model with more
parameters typically describes more variation than a model
with fewer parameters. Most likely, however, temperature is
not the only source of variation in performance; non-
random sampling and measurement error also cause
variation in performance. Therefore, a function that
describes 100% of the variation does not actually describe
the true performance curve. What we desire is a function
that describes the curve without fitting the noise in the data.

More sophisticated approaches exist for selecting the
appropriate statistical model when we do not know the
true model. Two interrelated approaches are information
theory and Bayesian theory (Burnham and Anderson, 2004;
Ellison, 2004; Johnson and Omland, 2004). Both approaches
enable one to select the best function from a set of plausible
candidates without over-fitting the data (Ellison, 1996;
Johnson, 1999; Anderson et al., 2000). These approaches
differ in an important way: the Bayesian method enables one
to consider prior information as well as the new data when
selecting a model. Prior information might be available from
similar studies of closely related species or pilot studies of
the same species. When no prior information is used, certain
Bayesian and information-theoretic approaches will yield
identical results (Ellison, 2004). For this reason, I shall focus
on the information-theoretic approach.

To find the best model, we must calculate the Akaike
information criterion (AIC) for each model under con-
sideration (Burnham and Anderson, 2002). The AIC is
calculated as follows:

AIC ¼ �2Lþ 2K þ
2KðK þ 1Þ

N � K � 1
, (1)

where L is the maximized log-likelihood value of the
model, K is the number of parameters (including the error
term), and N is the sample size. The maximized log-
likelihood value of a model can be computed easily from
the model’s RSS:

L ¼ log
RSS

N

� �
�N

2
, (2)
The AIC estimates the information lost when using a
particular model to describe the data (Burnham and
Anderson, 2002). Hence, we seek the model with the
lowest AIC, which is the function that minimizes our loss
of information (or best describes the data). Note the AIC
differs from a simple measure of fit, such as the r2, because
it also depends on the model’s complexity (i.e., the number
of parameters). The second and third terms in Eq. (1)
eliminate the bias in fit associated with more complex
models. By correcting this bias, we avoid choosing a model
that overfits the data.
To illustrate the value of information theory for

modeling thermal performance curves, I reanalyzed data
from a previous study in which my colleagues and I
measured the locomotor performance of lizards over a
wide range of body temperatures (Angilletta et al., 2002a).
In our original analysis, we avoided the problem of model
selection by adopting the minimum convex polygon
approach (van Berkum, 1986). Here, I fit these data to
five functions, each of which could be considered a
plausible model of the data (Fig. 1). Three of these
functions—the Gaussian, Quadratic, and Weibull func-
tions—have been used to theoretically or empirically
describe thermal performance curves (e.g., see Huey and
Kingsolver, 1993; Huang and Yang, 1995; Palaima and
Spitze, 2004). The remaining functions—the modified
Gaussian and the exponentially modified Gaussian func-
tions—were chosen because their complex structure should
provide a better fit to nonlinear data. First, I fit each model
using Table Curve (version 5.01; Systat Software, Inc.,
2002). Then, I calculated the AIC and related statistics for
each model (Table 1). Interestingly, each of the two
complex models was extremely unlikely to be the best
model in the set, despite an extremely high value of r2. The
modified Gaussian function provides a great example of
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Table 1

A comparison of plausible functions to describe the relationship between temperature (T) and performance (P)

Function K AIC Di wi r2

Gaussian: P ¼ ae½�0:5ðjT�bj=cÞ2 � 4 45.20 0 0.62 0.70

Quadratic: P ¼ aT2 þ bT þ c 4 46.63 1.43 0.30 0.64

Modified Gaussian: P ¼ ae½�0:5ðjT�bj=cÞd � 5 49.23 4.03 0.08 0.95

Weibull: P ¼ a d�1
d

� �1�d=d T�b
c
þ d�1

d

� �1=d
h id�1

e�½ðT�b=cÞþðd�1=dÞ1=d �d þ d�1
d

5 56.96 11.96 0.00 0.77

Exponentially modified Gaussian: P ¼ ac
ffiffiffiffi
2p
p

2d
eðb�T=dÞþðc2=2d2Þ d

dj j
� erf b�xffiffiffiffi

2c
p þ cffiffiffiffi

2d
p

� �h i
6 71.41 26.21 0.00 0.98

For each model, I report both the AIC and the differential AIC (Di), which is the difference between a given model’s AIC and the lowest AIC. I also report

the Akaike weight (wi), which is the normalized likelihood that the model is the best one in the set; the Akaike weights help us decide whether we feel

confident that the function with the lowest AIC is actually the best function in the set.
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overfitting the data; this model described 95% of the
variation in performance, but I doubt the performance
breadth is really as wide as the model suggests. My gut
instinct leads me to favor the exponentially modified
Gaussian function, with its familiar left-sided skew and
its superior r2. Despite my feeling, this model does not
provide a sufficiently better fit to justify its complexity.
Because the calculation of AIC depends on sample size (see
Eq. (1)), additional data could cause us to rank this model
higher in the future. For now, however, the best model
appears to be a simple Gaussian function. This result
should be somewhat satisfying because theorists often use a
Gaussian function to model the evolution of thermal
performance curves (Lynch and Gabriel, 1987; Gabriel and
Lynch, 1992; Huey and Kingsolver, 1993).

The superior likelihood of the Gaussian model should
trouble astute thermal biologists because thermal perfor-
mance curves typically appear skewed. Indeed, a theore-
tical basis for this skewness even exists (Sharpe and
DeMichele, 1977; Schoolfield et al., 1981). Given these
facts, we should endeavor to collect sufficient data to fit a
complex model accurately. In my example, the small
sample (N ¼ 9) imposed a severe bias correction because
smaller samples more likely lead to overfitting. A much
larger sample might have not only made the exponentially
modified Gaussian model more likely but might have also
made the modified Gaussian model less likely (assuming
additional data would indicate a narrower performance
breadth). If we are unable to collect a large sample, we
might decide to adopt a Bayesian approach, which would
enable us to use prior information about the shape of a
performance curve (Ellison, 2004). Regardless of which
approach we adopt, we should avoid using the data to
specify constants, such as the thermal optimum or critical
thermal limits (e.g., see Hertz et al., 1983). This procedure
poses a serious risk of overfitting because it forces the
function through a certain point, which probably differs
from the least-squares or maximum likelihood estimate of
the parameter. Conceivably, we could correct this bias by
adding an extra parameter for each ‘‘fudged’’ constant
when calculating AIC. Nevertheless, we would do better to
fit all parameters using a least-squares or maximum
likelihood procedure to avoid biasing the fit of the
function.

3. How should we compare thermal performance curves?

Regression versus ANOVA

Thermal biologists routinely employ one of two methods
to compare thermal performance curves: regression and
ANOVA (Bulté and Blouin-Demers, 2006). When taking
the regression approach, we would fit a function to the data
for each individual and estimate a thermal optimum from
the resulting model. Given a thermal optimum for each
individual, we could compute a mean and confidence
interval for the population. Furthermore, we could use a
linear or nonlinear regression analysis to compare thermal
optima (or other parameter values) between populations;
Peek and his colleagues (2002) described a nonlinear
regression analysis designed for repeated measures, which
we commonly deal with in studies of thermal performance
curves. When taking the ANOVA approach, we would
conduct a repeated measures ANOVA and post hoc
comparisons to identify the temperature at which perfor-
mance was maximal; often, performance at two or more
temperatures cannot be considered significantly different
and these temperatures would define an optimal tempera-
ture range (Huey and Stevenson, 1979). This range likely
contains the true mean of the thermal optimum for the
population. To compare thermal optima between popula-
tions, we would examine the interaction between popula-
tion and temperature and make post hoc comparisons of
performance between populations at each temperature. Of
course, the confidence intervals of the mean performance at
each temperature will determine the outcome of these
comparisons.
Bulté and Blouin-Demers criticized the ANOVA ap-

proach for being sensitive to variation in the thermal
performance curve among individuals. They provided a
simple example in which ANOVA was unable to distin-
guish between a population whose individuals exhibited
different thermal optima and a population whose indivi-
duals shared a single thermal optimum. Based on this
example, they argued that the regression approach better
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describes variation in thermal performance curves than the
ANOVA approach does. In fact, biologists already debated
the relative merits of these approaches in the 1990’s when
they began to quantify genetic variation in phenotypic
plasticity (reviewed by Via et al., 1995). In these debates,
the regression approach and the ANOVA approach were
labeled the polynomial approach and the character-state
approach, respectively. Ironically, this debate was put to
rest in 1995, when de Jong proved the two approaches are
mathematically equivalent (de Jong, 1995). In other words,
one should obtain identical results when comparing
thermal performance curves by polynomial regression or
by ANOVA. Since a nonlinear function cannot easily be
transformed into character states, nonlinear regression
does differ from ANOVA.

Why does the example provided by Bulté and Blouin-
Demers appear to favor the use of regression? Possibly, this
result stems from their choice of a nonlinear function. But
more likely, the answer lies in the false assumption that
regression estimates the thermal optima of individuals
without error. In fact, error arises from two sources. First,
one generally has a finite sample of observations recorded
under imperfectly controlled conditions. Second, one must
describe the data with a function that probably differs from
the true form of the performance curve. Both the choice of
the function and the estimation of its parameters produce
error in the thermal optimum (intra-individual error).
A third source of error arises from sub-sampling individuals
from a population (inter-individual error). Both regression
approach and ANOVA involve intra- and inter-individual
sources of error. In the regression approach, this error is
reflected in the confidence interval of the mean thermal
optimum for the population. In the ANOVA approach, this
error is reflected in the confidence intervals of performance
at each temperature. In the example provided by Bulté and
Blouin-Demers, the ANOVA approach appears less power-
ful than the regression approach because large confidence
intervals at each temperature prevent one from pinpointing
the mean thermal optimum with precision. But their
confidence interval from the regression approach was
artificially deflated because their data was generated from
a known function without introducing error. If they had
introduced intra-individual error, I suspect the regression
approach and the ANOVA approach would have per-
formed similarly.

For real data, one might favor regression or ANOVA
depending on the situation. When performance can be
measured at only a few temperatures for each individual, a
repeated measures ANOVA might be advantageous. For
small samples, estimates of the thermal optimum could be
very sensitive to the choice of regression model, particu-
larly when the performance curve is rather broad (e.g., see
the modified Gaussian curve in Fig. 1). In contrast,
ANOVA assumes nothing about the form of the relation-
ship between independent and dependent variables (Steury
et al., 2002); inferences would be restricted to performance
at the specific temperatures included in the study. When
performance can be measured at many temperatures for
each individual, regression seems advantageous because an
information-theoretic approach could be used more
effectively to choose the best model. In fact, one could
determine the best model for each individual, assuming two
or more models fit better or worse for certain individuals
(see Hertz et al., 1983).
Recently, a superior alternative to both ordinary

regression and ANOVA was developed. This method,
called Template Mode of Variation, uses a polynomial
function to decompose variation in thermal performance
curves (Izem and Kingsolver, 2005). Variation in the
thermal optimum (horizontal position of the curve) can be
isolated from variation in the mean performance over all
temperatures (vertical position of the curve). Consequently,
the method eliminates potential artifacts caused by
variation in mean performance among individuals. This
method should be particularly powerful when combined
with information theory to identify the best function for
separating modes of variation.
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